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A Dual Method for Computing Power Transfer
Distribution Factors

Henrik Ronellenfitsch, Marc Timme, Dirk Witthaut

Abstract—Power Transfer Distribution Factors (PTDFs) play
a crucial role in power grid security analysis, planning, and
redispatch. Fast calculation of the PTDFs is therefore of great
importance. In this paper, we present a non-approximative
dual method of computing PTDFs. It uses power flows along
topological cycles of the network but still relies on simple matrix
algebra. At the core, our method changes the size of the matrix
that needs to be inverted to calculate the PTDFs from N × N ,
where N is the number of buses, to (L−N +1)× (L−N +1),
where L is the number of lines and L−N +1 is the number of
independent cycles (closed loops) in the network while remaining
mathematically fully equivalent. For power grids containing a
relatively small number of cycles, the method can offer a speedup
of numerical calculations.

Index Terms—Power Transfer Distribution Factor, Line Out-
age Distribution Factor, DC power flow

I. INTRODUCTION

The supply of electric power is essential for the function
of the economy as well as for our daily life. Because of
their enabling function for other infrastructures such as traffic
or health care, power systems are considered to be uniquely
important [1], [2], [3], [4]. The rise of renewable power
sources puts new challenges to grid operation and security,
as they are typically strongly fluctuating and often located
far away from the load centers such that power must be
transported over large distances [1], [5], [6], [7]. Thus efficient
numerical methods are of great importance to analyze and
improve the operation of power grids.

An important method to assess the security of a power grid
and to detect impending overloads is given by the linear sensi-
tivity factors [8]. Power transfer distribution factors (PTDFs)
describe how the real power flows change if power injection is
shifted from one node to another. Correspondingly, line outage
distribution factors (LODFs) describe the flow changes when
one line fails. These elementary distribution factors can be
generalized to reactive power flow [9] and multiple line out-
ages [10]. PTDFs and LODFs are heavily used in the planning,
monitoring and analysis of power systems [8], for instance for
security analysis and contingency screening [11], [12], [13],
island detection [14], the simulation of cascading failures [15],
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transmission congestion management [16], the estimation of
available transfer capabilities [17] and re-dispatching in case
of impending overloads [18], [19].

The numerical simulation of large interconnected power
systems can be computationally demanding. A particularly
demanding step in the calculation of PTDFs is the inversion
of the nodal susceptance matrix whose size is given by the
number of buses N in the grid. Computation times can be
crucial when many different load configurations of the grid
have to be considered or for real-time security analysis.

In this paper we propose a new approach to computing
PTDFs in linear sensitivity analysis. It uses a decomposition
of power flows into cycle flows. Suppose we inject some real
power at node s and take it out at node r. We can satisfy
real power balance by sending the power along an arbitrary
path from s to r. Obviously, this does not yield the physical
solution and must be corrected by flows over alternative paths
from s to r. Our analysis offers a systematic way to obtain the
physically correct solution by adding cycle flows which do not
affect the power balance. This approach yields a novel method
for calculating the PTDFs which can be more efficient than
established alternatives. In particular, the size of the matrix
which has to be inverted is given by the number of independent
cycles in the network, which is often much smaller than N .

II. THE DC APPROXIMATION AND LINEAR SENSITIVITY
ANALYSIS

The operation of power grids is determined by the con-
servation of real and reactive power, also called Tellegen’s
theorem [20], [8]. The real power balance at one of the nodes
n = 1, . . . , N reads

Pn = gnnV
2
n −

∑
k 6=n

(VnVkgnk cos(θk − θn)

+VnVkbnk sin(θk − θn)) , (1)

where Pn is the real power injection, i.e. the difference of
generation and demand at the node n. The nodal voltage has
magnitude Vn and the phase angle θn. The nodes are con-
nected by transmission lines or transformers with conductance
gnk and susceptance bnk. Within the DC approximation one
neglects ohmic losses, gnk = 0, assumes that the voltage
magnitude remains fixed and linearizes the sine function [20],
[8]. In the simplest case one expands the sine around the
‘empty’ grid sin(θk − θn) ≈ θk − θn and sets all voltages
magnitudes to 1 p.u. The nodal voltage angles are then
determined by the linear set of equations

Bθ = P (2)
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where B ∈ RN×N is the nodal susceptance matrix with
elements

Bnk =


∑N

j=1
bnj if k = n;

−bnk if k 6= n.
(3)

The vectors θ = (θ1, . . . , θN )t ∈ RN and P =
(P1, . . . , PN )t ∈ RN summarize the nodal voltage angles
and the real power injections, respectively. Here and in the
following the superscript ‘t’ denotes the transpose of a vector
or matrix. The real power flow from node k to n is then given
by Fkn = bkn(θk − θn) = −Bkn(θk − θn).

We now consider an increase of the real power injection at
node s and a corresponding decrease at node r by the amount
∆P . The new vector of real power injections is given by

P ′ = P + ∆P qsr, (4)

where the components of qsr ∈ RN are +1 at position s, −1
at position r and zero otherwise. In the interest of reducing
notational clutter, we omit the explicit dependence of P ′ on
s and r. The nodal voltage angles then change by

∆θ = ∆P Xqsr, (5)

where X is the Moore-Penrose pseudo inverse of the nodal
susceptance matrix,

X = B−1 . (6)

Again, we omit the explicit dependence on s and r. It is noted
that B is a Laplacian matrix, which has one zero eigenvalue
with eigenvector (1, 1, . . . , 1)t [21]. This eigenvector corre-
sponds to a global shift of the voltage angles which has no
physical significance. Finally, the real power flows change by
∆Fij = bij(∆θi − ∆θj) and the associated power transfer
distribution factors are given by [8],

PTDF(i,j),s,r :=
∆Fij

∆P
= bij(Xis −Xir −Xjs +Xjr). (7)

Line outage distribution factors describe how the power
flows change when a line (s, r) is lost. They are defined as
[8]

LODF(ij),(sr) =
∆Fij

F
(0)
sr

(8)

where the superscript (0) denotes the flow before the outage.
The LODFs can be expressed by PTDFs in the following

way. To consistently model the outage of line (s, r), one
assumes that the line is disconnected from the grid by circuit
breakers and that some fictitious real power ∆P is injected
at node s and taken out at node r. The entire flow over the
line (s, r) after the opening thus equals the fictitious injections
F ′sr = ∆P . Using PTDFs, we also know that

F ′sr = F (0)
sr + PTDF(s,r),s,r ∆P (9)

Substituting F ′sr = ∆P and solving for ∆P yields

∆P = F ′sr =
F

(0)
sr

1− PTDF(s,r),s,r
(10)

Fig. 1. Adding oriented cycles corresponds to the operation of symmetric
difference. (a) A basis of the cycle space C ' R2 is given by the vectors
c1 = (0, 1,−1, 0, 0, 0,−1)t and c2 = (1,−1, 0, 1, 1, 0)t. Note that L =
6, N = 5 such that L−N+1 = 2. (b) A third cycle is obtained by forming the
linear combination c3 = c1 + c2 = (1, 0,−1, 1, 1,−1). Because the edges
are oriented, this linear combination corresponds to the symmetric difference
of edge sets.

The change of real power flows of all other lines is given by
∆Fij = PTDF(i,j),s,r∆P such that we finally obtain

LODF(ij),(sr) =
PTDF(i,j),s,r

1− PTDF(s,r),s,r
. (11)

The accuracy of the DC approximation and correspondingly
the PTDFs and LODFs can be increased if one linearizes
around a solved AC power flow base case, i.e. one linearizes
the equations (1) around one particular solution. This approach
leads to so-called ‘hot-start DC models’ or ‘incremental DC
models’ [22], [23], [24]. The governing equation of these
advanced DC models is still given by (2), but P and θ now
describe the change of the power injections and phase angles
with respect to the base case. The matrix B explicitly depends
on the base case, such that a new matrix has to be inverted
for every base case under consideration to compute the PTDFs
and LODFs. If many such base cases need to be analyzed, any
speedup of the computation can be extremely valuable.

III. FROM EDGE SPACE TO CYCLE SPACE

In this section, we review some basic linear algebraic
methods from graph theory that we use in the rest of the paper.
We mainly follow [25] and [21].

The connectivity structure of power transmission grids can
be modeled as a graph. A graph G = (V,E) consists of a set
V = {v1, . . . vN} of nodes (buses) and a set E = {e1, . . . eL}
of edges (transmission lines or branches), where each e` ∈ E
connects two nodes, e` = {v`1 , v`2}, v`1,2 ∈ V . Choosing
an arbitrary but fixed orientation of the edges, the graph can
be encoded in terms of the node-edge incidence matrix I ∈
RN×L [21] with components

In,` =

 1 if node n is the tail of edge e`,
−1 if node n is the head of edge e`,

0 otherwise.
(12)

The vector space V ' RN is called the node space of
G and the vector space E ' RL is called the oriented
edge space of G. V is spanned by the basis vectors vi =
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(0, . . . , 0, 1, 0, . . . 0)t ∈ RN with a 1 at the ith position and
zeros everywhere else. Each basis vector vi ∈ V is associated
with the node vi ∈ V . Similarly, the edge vector space E is
spanned by the basis vectors e` = (0, . . . , 0, 1, 0, . . . 0)t ∈ RL,
with one 1 at the `th position and is associated to the oriented
edge e` ∈ E.

The nullspace ker I of the node-edge incidence matrix is
called the cycle space C and its elements consist of all closed
oriented paths (cycles) of G. Each cycle path is represented
by a vector c ∈ RL containing a +1 (if the edge oriented in
the same way as the cycle) or a −1 (if the edge is oriented
in the opposite way from the cycle) for each edge that is part
of the cycle. It can be shown that C ' RL−N+k ⊂ RL, where
k is the number of connected components of G [25]. In the
following, we will consider the case k = 1 without loss of
generality because each connected component can be analyzed
separately. Thus, there exists a basis of L − N + 1 cycles
from which all other cycles can be obtained by (integer) linear
combination. Forming a linear combination with coefficients
in {−1, 0, 1} such that edges contained in more than one cycle
cancel is equivalent to the set-theoretic operation of symmetric
difference [25] between the edge sets making up the cycles
(see Fig. 1). The symmetric difference of two sets A and B is
defined as the set (A∪B) \ (A∩B). It contains all elements
that are contained in either A or B but not in both.

One cycle basis for G is constructed as follows. Let T be a
minimum spanning tree of G. We note that such a minimum
spanning tree contains exactly N − 1 edges. For each edge
e /∈ T , a cycle is defined by the set of e together with the path
in T connecting the nodes of e. There are exactly L−N + 1
such cycles, one for each edge not in T . They are linearly
independent because each of them contains at least one edge
not found in the others (e), thus they make up a basis of C.

Given such a basis of cycles {c1, . . . , cL−N+1}, we can now
define the cycle-edge incidence matrix C ∈ RL×(L−N+1) by

C`,c =

 1 if edge ` is element of cycle c,
−1 if reversed edge ` is element of cycle c,

0 otherwise.
(13)

An explicit calculation shows that the matrix product

IC = 0 ∈ RN×(L−N+1). (14)

IV. DUAL METHOD

In this section, we introduce an alternative approach to
network flows based on the dual representation of the network.
This method can speed up computations considerably and also
sheds some light on topological aspects of power flows. We
note that the term duality here refers to the fact that the PTDFs
can be calculated equivalently using voltage angles or cycle
flows. However, in power grids with few cycles, there are
much fewer cycle flows to compute than voltage angles, thus
making the cycle flow method more economical. To start, we
reformulate the DC model in a in a compact matrix notation.

Consider a grid with N nodes and L transmission lines
or transformers. The real power injections P and the voltage
angles θ are associated with the nodes of the network, i.e.

they are elements of RN . In contrast, power flows and sus-
ceptances are associated with lines, i.e they are represented
by elements of RL. To be precise, we label all transmission
lines by ` = 1, . . . , L. We then have a mapping between
` and an ordered pair of nodes (i, j). The ordering is ar-
bitrary but must kept fixed as we are dealing with directed
quantities such as power flows. This mapping is encoded in
the node-edge incidence matrix I ∈ RN×L. Let F` denote
the real power flows on the line ` and define the vector
F = (F1, . . . , FL) ∈ RL. The susceptances b` of the
transmission lines are summarized in the branch susceptance
matrix Bd = diag(b1, . . . , bL) ∈ RL×L and the branch
reactance matrix Xd = diag(1/b1, . . . , 1/bL) ∈ RL×L The
nodal suceptance matrix then reads B = IBdI

t.
Within the DC approximation (2), the voltage angles and

the flows are then written as

θ = (IBdI
t)−1P ,

F = Bd I
tθ. (15)

In practical applications it is common to define a PTDF matrix
which summarizes the distribution factors for all lines ` ∈
{1, . . . , L} and all nodes r ∈ {1 . . . , N}, fixing the slack node
s. For notational convenience we define the matrix S ∈ RN×N

generalizing the injection vectors qsr used above,

Sij =

 −1 if i = j 6= s
+1 if i = s, j 6= s

0 otherwise.
(16)

The PTDF matrix for a given slack node s then reads

PTDF = BdI
t (IBdI

t)−1 S . (17)

For the calculation of the LODFs we do not fix a slack node
s but consider the case where power ∆P is injected at one end
of a line ` and withdrawn at the other end. This is described
by the matrix

PTDF′ = BdI
t (IBdI

t)−1 I (18)

such that the LODFs read

LODF′ = PTDF′ (1l − diag(PTDF′))−1 , (19)

where diag denotes the diagonal part of a matrix.
The standard approach to the calculation of PTDFs fo-

cuses on the nodes of the grid and the computationally most
demanding step is the inversion of the nodal susceptance
matrix B ∈ RN×N . As an alternative, we propose a method
that works with the real power flows directly. Assume that
additonal real power ∆P is injected at the slack node s and
taken out at node r. To find the change of the power flows
we proceed in two steps. First, we construct all vectors ∆F
which satisfy the real power balance: The sum of all flows
incident to a node must equal the injected real power, +∆P
at node s, −∆P at node r and zero otherwise, cf. equation
(1). In vectorial form this condition can be written as

∆Pqrs
!
= I∆F (20)

Then we single out the vector which yields the correct voltage
angles ∆θ, see (5).
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Any vector of flows ∆F transporting the real power ∆P
from node s to node r can be decomposed into two parts: a
flow of magnitude ∆P on an arbitrary path from node s to
node r plus an arbitrary amount of cycle flows which do not
affect the power balance at any node. This decomposition is
illustrated in Fig. 3 (c) for a simple example network.

The set of paths from a fixed slack node s to all other nodes
in the grid is referred to as a spanning tree in graph theory and
can be calculated using efficient algorithms [25]. A spanning
tree is generally not unique; an arbitrary one can be chosen
for our purposes. It is most convenient to encode the paths by
a matrix T ∈ RL×N with the components

T`,r =

 1 if line ` is element of path s→ r,
−1 if reversed line ` is element of path s→ r,

0 otherwise.
(21)

A power flow of magnitude ∆P from node s to r is then
given by one vector ∆F = ∆PT ·,r, where T ·,r denotes the
rth column of the matrix T .

Furthermore, we need to characterize the cycle flows in the
grid. We denote the strength of the cycle flows by fc and
define the vector f = (f1 . . . , fL−N+1) ∈ RL−N+1, where
L − N + 1 is the number of independent cycles. The flow
vector ∆F is then written as the direct flow and an arbitrary
linear combination of cycle flows as

∆F = ∆P T ·,r +Cf , (22)

where C ∈ RL−N+1 is the cycle-edge incidence matrix (13).
For any choice of f , ∆F satisfies the real power balance at
each node because IC = 0.

In a second step, we determine the correct physical flow vec-
tor ∆F . This amounts to calculating the cycle flow strengths f
such that all voltage angles in the grid are unique. A necessary
and sufficient condition is that the sum of all angle differences
along any closed cycle equals zero,∑

(ij)∈cycle c

(∆θi −∆θj)
!
= 0 . (23)

As the cycles form a vector space it is sufficient to check
this condition for the L−N + 1 basis cycles. Using ∆Fij =
bij(∆θi −∆θj), the condition reads∑

(ij)∈cycle c

∆Fij/bij
!
= 0 (24)

for all basis cycles c ∈ {1, . . . , L − N + 1}. This set of
equations can be recast into matrix form,

CtXd∆F = 0. (25)

Inserting the decomposition (22) we obtain

CtXdCf + ∆P CtXdT ·,r = 0, (26)

which can be solved for the cycle flows f . The formal solution
is

f = −∆P (CtB−1d C)−1CtB−1d T ·,r . (27)

The changes of the real power flows are given by equation
(22). The PTDF matrix summarizing the distribution factors

Construct the cycle-edge incidence matrix C,
the spanning tree matrix T ,
and the branch reactance matrix Xd.

Form the matrices XT = CtXdT ,
and XC = CtXdC.

Solve the linear system XCY = XT .

PTDF = T −CY .

Fig. 2. Flow chart describing how to use the dual method to compute the
PTDF matrix from equation (28).

for all nodes r and a fixed slack bus s is then calculated by
inserting equation (27) into equation (22) and subsequently
using the definition (7). The result is

PTDF =
[
1l −C(CtXdC)−1CtXd

]
T . (28)

An efficient way of using this formula is shown in the flow
chart Fig. 2.

For the calculation of the LODFs we do not need to
calculate the matrix T , as only injections at the terminal end
of the lines ` = 1, . . . , L are considered. The LODF matrix is
given by equation (19) with

PTDF′ =
[
1l −C(CtXdC)−1CtXd

]
, (29)

where the derivation proceeds analogously to that of equation
(28).

We stress that equation (28) is not an approximation to the
conventional equation (17), it is an alternative but mathemat-
ically fully equivalent way of computing the PTDFs. There
are no approximations involved in the transformation to the
dual description. The applicability of linear distribution factors
itself is discussed in [22], [23], [26], [24].

V. EXAMPLE

As an instructive example we consider the 5-bus test grid
from MATPOWER [27] with N = 5 and L = 6. The circuit
diagram as well as the topology of the grid are illustrated in
Fig. 3. The node-edge incidence matrix is given by

I =


+1 +1 +1 0 0 0
−1 0 0 +1 0 0
0 0 0 −1 +1 0
0 −1 0 0 −1 −1
0 0 −1 0 0 +1

 . (30)

The grid contains 2 independent cycles, which are chosen as
cycle 1: line 2, reverse line 6, reverse line 3.
cycle 2: line 1, line 4, line 5, reverse line 2

The cycle-edge incidence matrix thus reads

Ct =

(
0 +1 −1 0 0 −1

+1 −1 0 +1 +1 0

)
. (31)

Fig. 3 (c) shows the physical real power flows as well as
the cycle decomposition (22) for s = 4 and r = 1. There is a
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Fig. 3. Physical and cycle flows in a 5-bus example network (a) Circuit
diagram of the 5-bus example network [27]. The reactances of each line are
given in p.u. (b) Topology of the network. Labels of nodes, lines and cycles as
used in the text. (c) Calculation of PTDFs. Black numbers give the physical
power flow ∆F when 1 MW is injected at node 4 and withdrawn at node 1.
The flows ∆F can be decomposed into a 1 MW-flow from node 4 to node 1
on the direct path plus two cycle flows shown by blue arrows.

direct flow of magnitude ∆P = 1 MW from node 4 to node
1. Additional cycle flows along the two independent cycles do
not affect the power balance. The physical flows are recovered
when the strength of the cycle flows is given by f1 = 0.126
MW and f2 = −0.148 MW.

The example shows how the new method can potentially
speed-up the computation of PTDFs. The conventional ap-
proach focuses on the N = 5 nodes of the grid and calculates
how the voltage angles change. But these N = 5 variables are
not independent but related topologically through the condition
(23). In the new approach only 2 independent variables, the
cycle flow strengths, must be calculated. The changes in power
flow then follow directly from (22) and the PTDFs from (28).

VI. IMPLEMENTATION AND COMPUTATIONAL
PERFORMANCE

The computationally most demanding part in the calculation
of PTDFs is the inversion of a large matrix. In the conventional
approach defined by equation (17), the N × N -matrix B =
IBdI

t has to be inverted. The dual method defined by equa-
tion (28) requires the inversion of a (L−N+1)×(L−N+1)-
matrixCtXdC instead. In real-world power grids, the number
of cycles L−N + 1 is often much smaller than N . Hence a
much smaller matrix has to be inverted which can lead to a
significant speed-up of numerical calculations.

In practical applications, the formula (17) for the conven-
tional computation of PTDFs is usually slightly modified. As
noted before, the nodal susceptance matrix B has one zero
eigenvalue associated with a global shift of the voltage angles.
One generally fixes the voltage angle at the slack node s at

tic;
PTDF1 = zeros(L,N);
Bf = Bd * I’;
Bbus = I * Bf;
PTDF1(:,an) = full(Bf(:,an)/Bbus(an,an));
toc

tic;
Xf = C’ * Xd;
Xc = Xf * C;
Xt = Xf * T;
PTDF2 = T - C * full(Xc \ Xt);
toc

Fig. 4. MATLAB code to compare the runtime of the conventional algorithm
and the dual method. All variable names are same as those used in the text
with the exception of an, which indexes all nodes except for the slack.

a value of zero and excludes this node from the calculation.
Equation (17) then reads

PTDFred = Bf,redB
−1
red, (32)

where Bf = BdI
t and the subscript ‘red’ indicates that slack

bus is excluded, i.e. the sth row and column is deleted in B
and the sth column for all other matrices. Furthermore, one
does not have to compute the full inverse of the matrices but
can solve a system of linear equations instead. For instance,
one can solve

PTDFredBred = Bf,red . (33)

for Bred instead of computing the inverse in equation (32).
This approach is implemented for instance in the popular
software package MATPOWER 5.1 [27].

The dual method yields the formula (28) for the computation
of the PTDF matrix. Again one can omit the full matrix
inversion and solve a linear system of equations instead. Then
computation is then done in two steps

Solve (CtXdC) TEMP = (CtXdT )

Compute PTDF = T −C TEMP. (34)

If one is only interested in calculating LODFs by means
of equations (19) and (29), a further speedup is possible by
defining C̃

t
= Ct√Xd = QR using a QR decomposition.

Then,
PTDF′ =

[
1l −

√
BdQQ

t
√
Xd

]
, (35)

completely eliminating the need for inverting any matrices.

A. Sparse numerics

We test how the dual method presented in this paper can
speed up actual computations using several test cases. We
compare the conventional method using Eq. (32) to the dual
method given by Eq. (34). The runtimes of all methods are
evaluated using the MATLAB script listed in Fig. 4. In
addition, we evaluate the runtime for the solution of the
linear set of equations alone, i.e. execution of the commands
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TABLE I
COMPARISON OF CPU TIME FOR THE CALCULATION OF THE PTDFS OBTAINED WITH MATLAB SPARSE MATRICES.

Test Grid Grid Size CPU time in seconds speedup
name source nodes lines cycles cycles/nodes Conventional method Dual method

N L L−N + 1 L−N+1
N

Eq. (32) Eq. (34) t(32)/t(34)
Transmission grids:

case300 [27] 300 409 110 0.37 0.0038± 0.0006 0.0020± 0.0005 1.90
case1354pegase [28] 1354 1710 357 0.26 0.131± 0.006 0.038± 0.001 3.46

GBnetwork [29] 2224 2804 581 0.26 0.38± 0.00 0.09± 0.00 4.43
case2383wp [27] 2383 2886 504 0.21 0.45± 0.01 0.12± 0.00 3.72
case2736sp [27] 2736 3495 760 0.28 0.63± 0.02 0.30± 0.02 2.06
case2746wp [27] 2746 3505 760 0.28 0.646± 0.031 0.307± 0.031 2.11

case2869pegase [28] 2869 3968 1100 0.38 0.709± 0.052 0.224± 0.002 3.16
case3012wp [27] 3012 3566 555 0.18 0.696± 0.052 0.173± 0.014 4.04
case3120sp [27] 3120 3684 565 0.18 0.735± 0.045 0.184± 0.020 3.99
westernus [30] 4941 6594 1654 0.33 1.906± 0.079 0.669± 0.054 2.85

case9241pegase [28] 9241 14207 4967 0.54 9.49± 0.97 7.61± 0.46 1.25
Distribution grids:

bus 873 7 [31] 880 900 21 0.02 0.043± 0.000 0.007± 0.001 6.43
bus 10476 84 [31] 8489 8673 185 0.02 4.49± 0.43 0.68± 0.21 6.63

10
2

10
4

10
6

10
−3

10
−1

10
1

nnz(B)

s
o
lu

ti
o
n
 o

f 
lin

e
a
r 

s
y
s
te

m
ru

n
ti
m

e
 (

s
)

(a)

10
2

10
4

10
6

10
−3

10
−1

10
1

nnz(C
t
X

d
C)

(b)

10
−1

10
0

10
1

10
0

10
1

nnz(C
t
X

d
C)/nnz(B)

to
ta

l 
s
p
e
e
d
u
p (c)

Fig. 5. Depending on network topology, the dual method can significantly
speed up the calculation of the PTDFs. (a, b) The runtime of the linear
inversion step using the MATLAB Cholesky decomposition solver scales with
the number of non-zero elements (‘nnz’) of the matrices B and the matrix
CtXdC, respectively. However, the scaling exponents and the prefactors are
vastly different, such that the dual method is faster. (c) The total speed-up is
given by the ratio of the runtimes of the conventional node-based method with
fixed slack and the dual method including all matrix multiplications. The total
speed-up lies between 1.25 and 6.63 for the test grids under consideration.
The runtimes have been evaluated using the code listed in Fig. 4 and are listed
in table I. The black lines are power-law fits to the data.

Bf(:,an)/Bbus(an,an) and Xc\Xt, respectively. The
variable an is a vector indexing all nodes except for the slack
node. All other variables are the same as before.

Because all input matrices involved exhibit a sparse struc-
ture (i.e., they contain many identically zero entries), it is
sensible to test computational performance using specialized
sparse numerics. To this end, we converted all input matrices
appearing in the code of Fig. 4 into the sparse format used
by MATLAB using the sparse command. Internally, MAT-
LAB then employs the high-performance supernodal sparse
Cholesky decomposition solver CHOLMOD 1.7.0 for the so-
lution of the linear system of equations. The resulting PTDF
matrix is full (i.e. it usually contains no zeros), such that we
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Fig. 6. Total speed-up of the dual method using dense numerics using the
same test grids as in Fig. 5 as a function of the ratio of the numbers of cycles
L − N + 1 and the number of nodes N . The black line is a power law fit
α× [(L−N+1)/N ]−γ to the data, which yields the parameters α = 1.355
and γ = 0.616.

converted the results back to a full matrix using the command
full. For the dual method, care has to be taken about where
to do the conversion (see the code example in Fig. 4).

The results are shown in Table I and Fig. 5 for various
test grids from [27], [28], [29], [30] and [31]. For the sake
of simplicity we have merged all parallel transmission lines,
such that the graph contains no loops. Tests were carried out
on a workstation with an Intel Xeon E5-2637v2 processor at
3.5 Ghz and 256 GB RAM using Windows 8.1Pro, MATLAB
version R2015a and MATPOWER version 5.1. All results were
averaged over 100 runs and the standard deviation is given.

We find that the dual method (34) significantly speeds up the
computation for all test grids under considerations. The dual
method is faster by a factor of up to 4.43 for transmission
grids and up to 6.63 for distribution grids. The speed-up is
even more pronounced if we consider the solution of the
linear system only, ranging up to 12.08 for transmission grids
and up to 75.03 for distribution grids. However, the dual
methods requires additional matrix multiplications to construct
the PTDFs, which reduces the total speed-up.

B. Dense numerics

Traditional dense numerical performance is dominated by
the dimensionality of the problem, which is given by the
number of nodes N for the conventional method and the
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number of cycles L−N + 1 for the dual method. Hence, the
ratio of the runtimes (the speedup) is essentially determined
by the ratio (L−N + 1)/N . The speed-up obtained using the
dual method is even larger than in the case of sparse numerics
and reaches up to a factor of 5.06 for the transmission test
grids and 19.89 for the distribution test grids studied here.
Numerically, we find that the total speedup scales as a power
law with the ratio of the number of cycles and the number of
nodes (L−N + 1)/N with an exponent γ = 0.616 (Fig. 6).

VII. POTENTIAL APPLICATIONS

A. Speeding up calculations

The dual method can significantly speed up the calculation
of PTDFs depending on the network topology as shown in
the previous section. Thus it can be useful for time-critical
applications where PTDFs must be calculated repeatedly – for
instance in ‘hot-start DC models’ or ‘incremental DC models’.
In these cases the matrix B is different for all base cases under
consideration and the distribution factors have to be calculated
separately for all cases (see [24] and references therein). For
instance, in the flow-based approach to capacity allocation and
congestion management in Europe, PTDFs must be calculated
for each timeframe [32].

There are two main reasons making the dual method
particularly suitable for this type of applications: First, the
speedup can be significant but the absolute computation times
are such that the conventional method is also feasible when
the computation time is not critical. Second, the application
of the dual method makes use of the spanning tree T and
the cycle incidence matrix C, the calculation of which also
requires some computational resources. However, both C and
T depend only on the network topology, but not on the actual
values of Bnk. They are identical for all base cases such that
they can be calculated once during initialization and stored
for further use. Even more, they can be updated easily when
a new bus or a transmission line is connected to the grid [33].

The speed-up is even more pronounced for distribution
grids, which are ultra-sparse by construction. The use of
PTDFs is less common in distribution grids, but has recently
gained some interest in the control of grid congestion due to
electric vehicle charging [34], [35].

B. Changes of the grid topology

In addition to purely numerical benefits, the dual formula-
tion can be used to derive analytical results on how power
flows in complex grid topologies. For example, it shows in
an intuitive way how the flows are affected by changes of the
grid topology. To demonstrate this we consider the closing
of a tie-switch in a distribution grid. Assuming that the grid
was tree-like in its original configuration, the closing induces a
single unique cycle c and the cycle incidence matrixC reduces
to a vector in RL. The PTDFs change as

∆PTDF = −C(CTXdC)−1CTXdT , (36)

which allows for a very simple interpretation. Consider the rth
row of the PTDF matrix and assume that the root of the tree
has been chosen as slack. Then we have

∆PTDF·,r = −C
∑

`∈cycle c and `∈ path s→r x`∑
`∈cycle c x`

(37)

This formulation shows two main aspects of flow rerouting due
to the closing of the switch: First the PTDF matrix changes
only for the lines which are part of the induced cycle. Second,
the strength of the change is given by the ratio of two sums
of line reactances: In the denominator we sum over all lines
which are part of the cycle c and in the numerator we sum only
over which are part of the cycle c and the direct path from the
slack node s to node r. Loosely speaking, this ratio measures
the overlap of the induced cycle and the direct path from s to
r. This and similar results can also be obtained in a different
way, but are immediately obvious in the dual formulation.

C. Quantifying unscheduled flows

Unscheduled power flows or loop flows refer to the fact
that power can flow through several paths in a meshed grid,
and thus lead to different flows than scheduled during trading.
These flows significantly contribute to limits for limit cross
border trading, e.g. in the interconnected European grid, and
have played an important role in events like the 2003 North
American blackout [36], [37], [38]. We here discuss the quan-
tification of unscheduled flows on a nodal level. Unscheduled
flows between different loop flows zones can be treated in the
same manor using zonal PTDFs and effective line parameters
[39], [40].

Suppose a generator at node s sells power P to a consumer
at node r and let π ∈ RL be a vector which encodes the
scheduled path for the power flow. In the simplest case there is
a direct connection between nodes s and r via the transmission
line `. Then π is a unit vector which is one at position ` and
zero otherwise. Formula (28) now directly yields the actual,
scheduled and unscheduled flows induced by this transaction:

F actual = Pπ︸︷︷︸
=:F scheduled

−PC(CTXdC)−1CTXdπ︸ ︷︷ ︸
=:F unscheduled

. (38)

VIII. CONCLUSIONS

Power Transfer Distribution Factors and Line Outage Dis-
tribution Factors are important tools enabling the efficient
planning of power grid operations in contingency cases. Es-
pecially for very large networks, computational efficiency can
be crucial. We presented a novel method of calculating the
PDTFs based on cycle flows, eliminating redundant degrees of
freedom present in the conventional approach. The main step
of the computation is the solution of a large linear system of
equations, whose dimensionality is reduced from the number
of nodes N to the number of fundamental cycles L−N+1, L
being the number of branches. This can result in a significant
improvement of the computation time for grids where the
number of cycles L−N + 1 is significantly smaller than the
number of nodes N . In addition, the cycle flow description
provides a conceptual advantage, dealing with power flows
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directly without recourse to voltage angles. We finally note that
mathematically equivalent models of flow are used to describe
hydraulic networks [41] or vascular networks of plants [42].
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